

DII-003-016403

Seat No.

M. Sc. (Sem. IV) (CBCS) Examination

May / June - 2015

Mathematics: Course No. 4003: (Number Theory - 2)
(New Course)

Faculty Code: 003 Subject Code: 016403 Time: 150 Minutes [Total Marks: 70 Instructions: (1) There are five questions. (2) All questions are compulsory. (3) Each question carries 14 marks. Q.1 Fill in the blanks: (Each question carries two marks) (i) If a/b and c/d are consequetive Farrey fractions in the nth row then is the unique rational between a/b and c/d with the smallest denominater. (ii) If r is a rational multiple of π then the sum of all rational values of (iii) If m and n are positive integers and θ is a rational solution of x^n =m then θ must (iv) If x_0 is a positive integer such that $1+2+3+...+x_0=y^2$ then $(2x_0+1,y)$ is a solution of Pell's equation (v) If the continued fraction expansion of θ is periodic then θ =_____. (vi) If $\theta > 1$ and $\theta + \theta^{-1} < \sqrt{5}$ then $\theta <$ and $\theta^{-1} >$ (vii) If θ is an irrational number and a/b is a rational number with b>0,(a,b)=1 and $|\theta - a/b| < \frac{1}{2b^2}$ then a/b=_____ **Q.2** Attempt any two. (a) State and Prove Hurwitz's Theorem using Farrey Fraction Method. 7 (b) If θ is an irrational number and $\frac{h_n}{k_n}$ denotes the nth convergent corresponding to the continued fraction expansion of θ then prove that $|\theta k_{n-1} - h_{n-1}| > \frac{1}{k_{n+1}} > |\theta k_n - h_n|, \forall n \ge 1.$ (c) If $a_0, a_1, a_2, ..., a_n$ are positive integers and x > 1 then prove that $< a_0, a_1, a_2, ..., a_{n-1}, x > = \frac{xh_{n-1} + h_{n-2}}{xk_{n-1} + k_{n-2}}$. Deduce that $< a_0, a_1, ..., a_n > = \frac{h_n}{k_n}$ 7 for all n > 1

Q.3 All are compulsory:

- (a) Suppose $a_0, a_1, a_2, ..., a_n$ are positive integers and $\frac{h_n}{k_n}$ are the nth convergents corresponding to this intergers then prove that for all $n \ge 1$, $h_n k_{n-2} h_{n-2} k_n = (-1)^n$.
- (b) Prove that every irrational number θ can be uniquely expressed as an infinite simple continued fraction.
- (c) Suppose θ is an irrational number, $\frac{a}{b}$ is a rational number with b>0 and $\frac{h_n}{k_n}$ are the nth convergent for θ . If $|\theta b a| < |\theta k_n h_n|$ implies $b \ge k_{n+1}$ then prove that $\left|\theta \frac{a}{b}\right| < \left|\theta \frac{h_n}{k_n}\right|$ implies $b \ge k_n$.

Q.3 All are compulsory:

- (a) Prove that if θ is a rational multiple of π and $\cos \theta$ is rational then $|\cos \theta| = 7$ cannot be different from $0, \frac{1}{2}$ and 1.
- (b) Suppose (x_1,y_1) is the smallest positive solution of x^2 -d y^2 =1(d is a positive integers with is not a perfect square). Prove that all the positive solutions of the above equaition are given by $x_n + \sqrt{d} y_n = (x_1 + \sqrt{d} y_1)^n$ (n = 1,2,3,..).

Q.4 Attempt any two of the following:

- (a) Prove that the Diophantine equation $15x^2-7y^2 = 9$ has no solution in integers.
- (b) Suppose (x,y,z) is a primitive Pythagorean triplet. Prove that there are positive integers r and s such that r>s, (r,s) = 1 and $x = r^2 s^2$, y = 2rs and $z = r^2 + s^2$.
- (c) Prove that for every integer $n \ge 1$ there is a polynomial $f_n(x)$ with integer coefficients and leading coefficient 1 such that $f_n(2\cos\theta) = 2\cos n\theta$ for all θ .

Q.5 Do as directed: (Each question carries two marks)

- (i) Find the simple continued fraction expansion of $\sqrt{2}$ -1.
- (ii) Find the simple continued fraction expansion of $\frac{1741}{31}$.
- (iii) Find the irrational number θ whose continued fraction expansion is < 4,4,8,4,8,4,8,...>.
- (iv) Find the primitive pythagorean tripletes for which z < 60.
- (v) Find first three positive solutions of $x^2 19y^2 = 1$.
- (vi) Find the simple continued fraction expansion of $\frac{1}{\sqrt{2}}$
- (vii) Find first three positive solutions of $x^2 2y^2 = -1$.